Skip to main content

Stretched Exponential decay function curve fitting with GNUPLOT

Following is the GNUPLOT script to plot the data and to perform the Stretched exponential decay curve fitting with time-series data.

The stretched exponential function
also called the Kohlrausch–Williams–Watts (KWW) function.


gnuplot << EOF
reset
set terminal pngcairo  background "#ffffff" enhanced font "Times-New-Roman-Bold,10" fontscale 1.0 size 500, 500
set key on b c inside horizontal
set output 'Data.png'
set title "Stretched exponential curve"
set xlabel "Time" rotate parallel
set ylabel "AU" rotate parallel
set style line 1  lt 1 dt 1 pi 0 ps 1 # lt = color; pt = point type; dt = dash type; ps = size 
set style line 2  lt 2 dt 1 pi 0 ps 1

g(x) =  a * exp(-(x/t)**b)
fit g(x) "data.xvg" u (column(1)):(column(2)) via a,t,b
set xtic

set label 1 sprintf("g(x) =%3.7f * exp(-(x/%3.7f)**(%3.7f))",a,t,b) at graph 0.10,0.95 font "arialbd,8"
chi2=(FIT_STDFIT*FIT_STDFIT)
set label 2 sprintf("{/Symbol c}^2 = %.7f", chi2)  at graph 0.65,0.63 font "arialbd,8" @chi2
set table "FexpDecayFit-stretched.dat"
p g(x), "data.xvg" u (column(1)):
(column(2))
unset table
p g(x) ls 2 t "
Stretched ex-fit", "data.xvg" u (column(1)):(column(2)) w l ls 1 lw 3 t "Data"
EOF

Comments

Most Viewed Post

How to keep chain ID / IDs in GROMACS?

In GROMACS , while converting pdb file (monomer or multimer) into .gro file, it do not preserve the chain ID information. Due to the lack of chain ID information, pdb file retrieved from .gro file at any stage of the simulation has missing chain IDs and pdb file can not be visualized properly in PYMOL / RASMOL . There are two ways to convert .gro file into .pdb Lets say your protein name is xyz.pdb 1] gmx editconf -f xyz.gro -o xyz.pdb 2] gmx trjconv -f  xyz.gro -o xyz.pdb -s xyz.tpr Only ' trjconv ' will retrieve the chain ID information for all the chains. and not ' editconf '. If you have monomer protein and wish to assign any chain ID then following command will be of your interest: gmx editconf -f xyz.gro -o xyz.pdb -label [ chain-ID ]

Python : Turtle tree

Turtle module can be used to draw some very nice patterns in Python. Following are some examples with code. ==================== import turtle import random t = turtle.Turtle( shape = "circle" ) t.lt( 90 ) lv = 14 l = 120 s = 30 t.color( 'indigo' ) t.width(lv) t.penup() t.bk(l) t.pendown() t.fd(l) def draw_tree ( l , level ): width = t.width() # save the current pen width t.width(width * 3.0 / 4.0 ) # narrow the pen width l = 3.0 / 4.0 * l #t.color(R,G,B) #provide the RGB numbers t.color(random.random(), random.random(), random.random()) t.lt(s) t.fd(l) if level < lv: draw_tree(l, level + 1 ) t.color(random.random(), random.random(), random.random()) t.bk(l) t.rt( 2 * s) t.fd(l) if level < lv: draw_tree(l, level + 1 ) t.color(random.random(), random.random(), random.random()) t.bk(l) t.lt(s) t.width(width) # restore the previous pen width t.speed( "fastest" ) draw_tree(l, 5 ) turtle.done() ===========...

How to use MODELLER to build DIMER homology model with ligand?

How to use MODELLER to build DIMER homology model with ligand? Procedure:     Get Fasta sequence from UNIPROT database.     Predict sequence alignment from HHPRED     Prepare INPUT files for MODELLER     model-dimer.py (Click to download) ############### from modeller import * from modeller.automodel import * #from modeller import soap_protein_od env = environ() env.io.hetatm = True a = automodel(env, alnfile='TvLDH-1bdm.ali',               knowns='1bdm',               sequence='TvLDH',               assess_methods=(assess.DOPE,                            ...

GNUPLOT: How to draw trend line?

How to draw trend line in the GNUPLOT? If you like to plot graphs in gnuplot and dont know how to plot trendline then here you are. Follow the steps mentioned below... 1. You should have a files with X and Y values 2. Open GNUPLOT (Operating system dosen't change anything here. It works on all systems) 3. Type the command in the gnuplot terminal Lets say I have a file for eg. '1.txt' p '1.txt' u 1:2 w d title '', '1.txt' u 1:2 smooth acsplines title '1.txt' OR p '1.txt' u 1:2 w d title '', '1.txt' u 1:2 smooth bezier title '1.txt' It will plot as below...

Plagarism Checker

Plagiarism is a serious academic misconduct. Whether you are a student writing a college essay, a teacher reviewing a student’s submission, or just someone who works extensively with content, it is important to ensure that the content is not plagiarized. Following are some resources to check Plagiarism. http://www.plagscan.com https://www.plagramme.com/   http://www.plagiarisma.net/fr/# http://www.scanmyessay.com http://www.plagtracker.com http://www.duplichecker.com http://www.smallseotools.com/plagiarism-checker http://www.plagium.com/fr/detecteurdeplagiat http://www.paperrater.com/plagiarism_checker http://www.copyleaks.com http://www.plagiarismchecker.com http://www.quetext.com http://plagiarismdetector.net http://www.solidseotools.com/plagiarism-checker http://www.dustball.com/cs/plagiarism.checker http://www.articlechecker.com http://www.plagiarismcheck.org

Science News

Enter your email address:

PhD Vacancy Bioinformatics

PhD Vacancy Chemoinformatics