Skip to main content

How to use MODELLER to build DIMER homology model with ligand?

How to use MODELLER to build DIMER homology model with ligand?

Procedure:

    Get Fasta sequence from UNIPROT database.

    Predict sequence alignment from HHPRED

    Prepare INPUT files for MODELLER

###############
from modeller import *
from modeller.automodel import *
#from modeller import soap_protein_od
env = environ()
env.io.hetatm = True
a = automodel(env, alnfile='TvLDH-1bdm.ali',
              knowns='1bdm',
              sequence='TvLDH',
              assess_methods=(assess.DOPE,
                              #soap_protein_od.Scorer(),
                              assess.GA341))
a.md_level = refine.very_slow
a.starting_model = 1
a.ending_model = 1   #Number of output models
a.final_malign3d = True
a.make()
################

>P1;1bdm
structureX:1bdm.pdb: 0: A: 333: B:undefined:undefined:-1.00:-1.00
MKAPVRVAVTGAAGQIGYSLLFRIAAGEMLGKDQPVILQLLEIPQAMKALEGVVMELEDCAFPLL
AGLEATDDPDVAFKDADYALLVGAAPR---------LQVNGKIFTEQGRALAEVAKKDVKVLVVG
NPANTNALIAYKNAPGLNPRNFTAMTRLDHNRAKAQLAKKTGTGVDRIRRMTVWGNHSSIMFPDL
FHAEV----DGRPALELVDMEWYEKVFIPTVAQRGAAIIQARGASSAASAANAAIEHIRDWALGT
PEGDWVSMAVP--SQGEYGIPEGIVYSFPVTA-KDGAYRVVEGLEINEFARKRMEITAQELLDEM
EQVKALGLI----./
MKAPVRVAVTGAAGQIGYSLLFRIAAGEMLGKDQPVILQLLEIPQAMKALEGVVMELEDCAFPLL
AGLEATDDPDVAFKDADYALLVGAAPRKAGMERRDLLQVNGKIFTEQGRALAEVAKKDVKVLVVG
NPANTNALIAYKNAPGLNPRNFTAMTRLDHNRAKAQLAKKTGTGVDRIRRMTVWGNHSSIMFPDL
FHAEV----DGRPALELVDMEWYEKVFIPTVAQRGAAIIQARGASSAASAANAAIEHIRDWALGT
PEGDWVSMAVP--SQGEYGIPEGIVYSFPVTA-KDGAYRVVEGLEINEFARKRMEITAQELLDEM
EQVKALGLI----.*

>P1;TvLDH
sequence:TvLDH:::::::0.00:0.00
MSEAAHVLITGAAGQIGYILSHWIASGELYG-DRQVYLHLLDIPPAMNRLTALTMELEDCAFPHL
AGFVATTDPKAAFKDIDCAFLVASMPLKPGQVRADLISSNSVIFKNTGEYLSKWAKPSVKVLVIG
NPDNTNCEIAMLHAKNLKPENFSSLSMLDQNRAYYEVASKLGVDVKDVHDIIVWGNHGESMVADL
TQATFTKEGKTQKVVDVLDHDYVFDTFFKKIGHRAWDILEHRGFTSAASPTKAAIQHMKAWLFGT
APGEVLSMGIPVPEGNPYGIKPGVVFSFPCNVDKEGKIHVVEGFKVNDWLREKLDFTEKDLFHEK
EI--ALNHLAQGG./
MSEAAHVLITGAAGQIGYILSHWIASGELYG-DRQVYLHLLDIPPAMNRLTALTMELEDCAFPHL
AGFVATTDPKAAFKDIDCAFLVASMPLKPGQVRADLISSNSVIFKNTGEYLSKWAKPSVKVLVIG
NPDNTNCEIAMLHAKNLKPENFSSLSMLDQNRAYYEVASKLGVDVKDVHDIIVWGNHGESMVADL
TQATFTKEGKTQKVVDVLDHDYVFDTFFKKIGHRAWDILEHRGFTSAASPTKAAIQHMKAWLFGT
APGEVLSMGIPVPEGNPYGIKPGVVFSFPCNVDKEGKIHVVEGFKVNDWLREKLDFTEKDLFHEK
EI--ALNHLAQGG.*


    In the alignment file dot ( . ) represents the ligand and slash ( / ) represents the chain break.

    Precautions to be taken:

Make sure ligand is at the end of each chain before TER in the template PDB (here 1bdm.pdb) and delete all other molecules (for example: Water)

    Execute modeller in the linux terminal

        follow the command

mod9.17 model-dimer.py

( OR  for higher version of modeller

mod9.18 model-dimer.py )

That's all. You are ready to analyze models. 🙂
 

For Homology model validation follow the links below:

Homology model validation

Evaluation and Validation of Protein Structures (Single or Multiple)

Comments

Most Viewed Post

How to keep chain ID / IDs in GROMACS?

In GROMACS , while converting pdb file (monomer or multimer) into .gro file, it do not preserve the chain ID information. Due to the lack of chain ID information, pdb file retrieved from .gro file at any stage of the simulation has missing chain IDs and pdb file can not be visualized properly in PYMOL / RASMOL . There are two ways to convert .gro file into .pdb Lets say your protein name is xyz.pdb 1] gmx editconf -f xyz.gro -o xyz.pdb 2] gmx trjconv -f  xyz.gro -o xyz.pdb -s xyz.tpr Only ' trjconv ' will retrieve the chain ID information for all the chains. and not ' editconf '. If you have monomer protein and wish to assign any chain ID then following command will be of your interest: gmx editconf -f xyz.gro -o xyz.pdb -label [ chain-ID ]

Python : Turtle tree

Turtle module can be used to draw some very nice patterns in Python. Following are some examples with code. ==================== import turtle import random t = turtle.Turtle( shape = "circle" ) t.lt( 90 ) lv = 14 l = 120 s = 30 t.color( 'indigo' ) t.width(lv) t.penup() t.bk(l) t.pendown() t.fd(l) def draw_tree ( l , level ): width = t.width() # save the current pen width t.width(width * 3.0 / 4.0 ) # narrow the pen width l = 3.0 / 4.0 * l #t.color(R,G,B) #provide the RGB numbers t.color(random.random(), random.random(), random.random()) t.lt(s) t.fd(l) if level < lv: draw_tree(l, level + 1 ) t.color(random.random(), random.random(), random.random()) t.bk(l) t.rt( 2 * s) t.fd(l) if level < lv: draw_tree(l, level + 1 ) t.color(random.random(), random.random(), random.random()) t.bk(l) t.lt(s) t.width(width) # restore the previous pen width t.speed( "fastest" ) draw_tree(l, 5 ) turtle.done() ===========...

Plagarism Checker

Plagiarism is a serious academic misconduct. Whether you are a student writing a college essay, a teacher reviewing a student’s submission, or just someone who works extensively with content, it is important to ensure that the content is not plagiarized. Following are some resources to check Plagiarism. http://www.plagscan.com https://www.plagramme.com/   http://www.plagiarisma.net/fr/# http://www.scanmyessay.com http://www.plagtracker.com http://www.duplichecker.com http://www.smallseotools.com/plagiarism-checker http://www.plagium.com/fr/detecteurdeplagiat http://www.paperrater.com/plagiarism_checker http://www.copyleaks.com http://www.plagiarismchecker.com http://www.quetext.com http://plagiarismdetector.net http://www.solidseotools.com/plagiarism-checker http://www.dustball.com/cs/plagiarism.checker http://www.articlechecker.com http://www.plagiarismcheck.org

Homology model validation

Homology model can be validated in multiple ways. Here you will find useful description on how to validate your homology model. Web-servers: UCLA-DOE LAB — SAVES : The Structure Analysis and Verification Server ( New Link ) This metaserver runs 6 programs for checking and validating protein structures during and after model refinement. PROCHECK : Checks the stereochemical quality of a protein structure by analyzing residue-by-residue geometry and overall structure geometry. WHAT_CHECK : Derived from a subset of protein verification tools from the WHATIF program (Vriend, 1990), this does extensive checking of many sterochemical parameters of the residues in the model.   ERRAT : Analyzes the statistics of non-bonded interactions between different atom types and plots the value of the error function versus position of a 9-residue sliding window, calculated by a comparison with statistics from highly refined structures.   VERIFY_3D : Determines the ...

Science News

Enter your email address:

PhD Vacancy Bioinformatics

PhD Vacancy Chemoinformatics